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Abstract
This paper studies a two-lane totally asymmetric simple exclusion processes
(TASEP) with narrow entrances under parallel update. Particles move on two
parallel lanes in the opposite directions without lane changing. The narrow
entrances are modelled in this way: the entry of a particle is not allowed if
the exit site of the other lane is occupied (see also Pronina and Kolomeisky
2007 J. Phys. A: Math. Theor. 40 2275). We mainly focus on the case where
particles hop deterministically in the bulk. The phase diagram, bulk density
and particle currents are analysed using mean-field approximation. It is shown
that there are two symmetry breaking phases, and one of them (i.e., asymmetric
low density/low-density phase) occupies only a line in the phase diagram. A
multi-stable phenomenon is also observed. Monte Carlo simulations are carried
out and the simulation results deviate from the mean-field prediction, because
correlations are not considered in mean-field calculation. A seesaw phase is
reproduced when α = 1. The results are also compared with that obtained
from the two-lane system with random update. Finally, preliminary simulation
results where particles hop with the rate q < 1 in the bulk are reported and it is
shown that the introduction of stochastic hopping changes the phase diagram
structure.

PACS numbers: 05.70.Ln, 02.50.Ey, 05.60.Cd

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, driven diffusive systems have attracted the interests of physicists because they
show a variety of nonequilibrium effects [1, 2]. A very prominent example is the asymmetric

1751-8113/07/319213+13$30.00 © 2007 IOP Publishing Ltd Printed in the UK 9213

http://dx.doi.org/10.1088/1751-8113/40/31/003
http://stacks.iop.org/JPhysA/40/9213


9214 R Jiang et al

Figure 1. Sketch of the model. On lane 1, particles move from left to right and on lane 2, particles
move from right to left. The entrance site on lane 1 is denoted by p1 and the exit site on lane 1 is
denoted by pL. The entrance site on lane 2 is denoted by mL and the exit site on lane 2 is denoted
by m1. In the bulk, the particles hop forward with rate q provided the target site is empty.

simple exclusion processes (ASEPs), which are discrete non-equilibrium models that describe
the stochastic dynamics of multi-particle transport along one-dimensional lattices. Each lattice
site can either be empty or occupied by a single particle. Particles interact only through hard-
core exclusion potential. ASEPs were introduced in 1968 as theoretical models for describing
the kinetics of biopolymerization [3] and have been applied successfully to understand polymer
dynamics in dense media [4], diffusion through membrane channels [5], gel electrophoresis
[6], dynamics of motor proteins moving along rigid filaments [7], the kinetics of synthesis of
proteins [8] and traffic flow analysis [9, 10].

Many non-equilibrium behaviours such as boundary-induced phase transition, the unusual
dynamical scaling and spontaneous symmetry breaking have been observed in ASEPs. The
first model that exhibits spontaneous symmetry breaking was a model with open boundaries
and it is known as the ‘bridge model’ [11]. In the model, two species of particles move in the
opposite directions. It was shown that two phases with broken symmetry could exist, despite
the update rules are symmetric with respect to the two species. While it is argued by Monte
Carlo simulations that one of the phases (i.e., asymmetric low density/low-density phase) may
not exist in the thermodynamic limit [12–18], the mean-field analysis shows that it could exist
in a very small region.

To analyse more realistic phenomena, the multi-lane ASEPs have been developed to
model the transport along parallel channels [18–23]. Recently, Pronina and Kolomeisky [24]
have studied the spontaneous symmetric breaking in a two-lane ASEP with narrow entrances.
It is shown that there are two phases exhibiting spontaneous symmetric breaking as in the
‘bridge model’.

In most symmetry breaking models, random update rules are adopted, which introduce
stochastic effects not only at boundaries but also in the bulk. Willmann et al [15] investigated
the bridge model with parallel sublattice update and it is shown that the symmetric breaking
is due to an amplification mechanism of fluctuations.

In this paper, we investigate a two-lane model with narrow entrances under parallel
update rules. We study the system using both mean-field approach and extensive Monte Carlo
simulations. The results are compared with those obtained from random update rules.

The paper is organized as follows. In section 2, we give a brief description of the model.
In section 3, we present the results of mean-field calculations. In section 3, we discuss the
results of MC simulations. We give our conclusions in section 4.

2. Model

The two-lane model with narrow entrances is proposed by Pronina and Kolomeisky [24]. The
system consists of two parallel one-dimensional L lattices with two species of particles moving
in different lanes in the opposite directions (see figure 1). The hoppings between the lanes are
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(a) (b)

Figure 2. Phase diagram of single lane ASEP under open boundary conditions. (a) q = 1;
(b) q < 1.

not allowed. In the bulk, a particle hops to the next site with probability q provided the target
site is empty. At the exit site, a particle is removed with probability β. At the entrance site,
a particle is injected with probability α provided this site and exit site on the other lane are
empty. In our model, the parallel update rules are adopted, i.e., the dynamics is applied to all
sites at the same time. In contrast, in random update rules adopted in [24], a site is chosen
randomly in each time step and one Monte Carlo step includes 2L time steps.

In this paper, we mainly discuss the case q = 1, i.e., the dynamics are deterministic in
the bulk. A preliminary simulation of q < 1 is also presented and the detailed investigations
will be carried out in future work.

3. Mean-field calculation

In this section, we present the mean-field calculation in the case of q = 1. First, let us briefly
recall the results of ASEP on a single lane with open boundaries. For q = 1, when entrance
probability is larger than removal probability (i.e., α > β), the system is in a high-density
(HD) phase and the bulk density is ρ = 1

β+1 , the current is J = β

β+1 . When α < β, the system
is in a low-density (LD) phase and the bulk density is ρ = α

α+1 , the current is J = α
α+1 . When

α = β, domain wall separating high-density region and low-density region performs a random
walk and a linear density profile appears. The maximum current (MC) J = 0.5 can only be
reached at α = β = 1. In this case, the dynamics is completely deterministic and a particle
is injected into the system every two time steps and similarly, a particle is removed from the
system every two time steps (see figure 2(a)) [25, 26].

For q < 1, the MC phase begins to expand in the phase diagram: it exists when
α > 1−√

1 − q and β > 1−√
1 − q and the maximum current is J = 1

2 (1−√
1 − q). When

α > β and β < 1 − √
1 − q, the system is in the HD phase and the current is J = β(q−β)

q−β2 .

When α < β and α < 1−√
1 − q, the system is in the LD phase and the current is J = α(q−α)

q−α2

(see figure 2(b)).
Next we consider the two-lane ASEP with narrow entrances. First, we consider the special

case α = β = 1. For simplicity, we assume initially there is no particle in the system. In this
case, two subcases are distinguished.
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• L is odd. Let us introduce occupation variables pi and mi for lanes 1 and 2, so that pi = 1
and mi = 1 if corresponding site i is occupied, and 0 if unoccupied. In this subcase, it
is obvious that p1 = m1 and mL = pL are always met after the first particle reaches exit
site. In other words, the exit site on the other lane will be empty if the entrance site is
empty and vice versa. Therefore, the narrow entrances have no effect on the dynamics of
the system. The maximum current can be reached in both lanes.

• L is even. In this subcase, it can easily be found that the current depends on the system
size as J = N/2

N+1 . Therefore, the maximum current can be achieved only when N → ∞.

When α �= 1 or β �= 1, the maximum current phase cannot be reached in both lanes.
Therefore, next we discuss the five situations, i.e., asymmetric HD/HD phase, asymmetric
HD/LD phase, asymmetric LD/LD phase, symmetric HD phase and symmetric LD phase.

It can easily be understood that the asymmetric the HD/HD phase does not exist, because
the situation on each lane is determined by β in HD phase and β is the same for both lanes.

For the other cases, let us assume the effective entrance rates are given by α1 and α2.
Therefore

α1 = α(1 − m1) and α2 = α(1 − pL). (1)

3.1. Asymmetric HD/LD phase

First, we consider the asymmetric HD/LD phase. Without loss of generality, we assume that
lane 1 is in HD and lane 2 is in LD. This is fulfilled when

α1 > β and α2 < β. (2)

Since lane 1 is in HD, the bulk density in lane 1 is

ρ1 = 1

β + 1
. (3)

The density on the exit site L equals the bulk density, so that

pL = 1

β + 1
. (4)

Thus,

α2 = α

(
1 − 1

β + 1

)
= αβ

β + 1
. (5)

Since lane 2 is in LD, the current is

J2 = α2

α2 + 1
=

αβ

β+1
αβ

β+1 + 1
= αβ

αβ + β + 1
. (6)

The bulk density in lane 2 is

ρ2 = αβ

αβ + β + 1
. (7)

The current in lane 2 can also be calculated by

J2 = m1β. (8)

Thus, from equations (6) and (8), one can obtain

m1 = α

αβ + β + 1
. (9)
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Therefore,

α1 = α(1 − m1) = α

(
1 − α

αβ + β + 1

)
. (10)

From equations (2) and (5), we have

αβ

β + 1
< β, (11)

which is always met. From equations (2) and (10), one has

α

(
1 − α

αβ + β + 1

)
> β. (12)

Solving equation (12) (see the appendix), one has

β

1 − β
< α < 1 + β for β <

√
5 − 1

2
(13)

and

1 + β < α <
β

1 − β
for β >

√
5 − 1

2
. (14)

It is obvious that equation (14) can never be met and the right-hand side of equation (13) can
always be met. Therefore, for the HD/LD phase to exist, one has

β

1 − β
< α � 1. (15)

3.2. Asymmetric LD/LD phase

Next we discuss the asymmetric LD/LD phase, which exists if

α1 < β and α2 < β and α1 �= α2. (16)

Since both lanes are in LD, we have

J1 = α1

α1 + 1
, J2 = α2

α2 + 1
. (17)

J1 and J2 can also be calculated by

J1 = pLβ and J2 = m1β. (18)

Therefore, we have

pL = α1

(α1 + 1)β
and m1 = α2

(α2 + 1)β
. (19)

Therefore, α1 and α2 are determined by

α1 = α(1 − m1) = α

(
1 − α2

(α2 + 1)β

)
, (20)

α2 = α(1 − pL) = α

(
1 − α1

(α1 + 1)β

)
. (21)

Substituting equation (20) into equation (21), we have

α2 = α

[
αβ(α2β + β − α2) + β(α2β + β) − α(α2β + β − α2)

αβ(α2β + β − α2) + β(α2β + β)

]
. (22)
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From equation (22), one can obtain

(αβ − α + β)
[
βα2

2 + (α + β − αβ)α2 − αβ
] = 0. (23)

Equation (23) can be met if

αβ − α + β = 0 (24)

or

βα2
2 + (α + β − αβ)α2 − αβ = 0. (25)

When equation (24) is met, i.e., α = β

1−β
, equation (20) becomes

α1 = β

1 − β

(
1 − α2

(α2 + 1)β

)
. (26)

Since LD/LD requires α1 < β, equation (26) becomes

1

1 − β

(
1 − α2

(α2 + 1)β

)
< 1, (27)

which leads to

α2 >
β2

1 − β2
. (28)

This means, there are multi-values of α2 corresponding to a pair of (α, β), provided
β2

1−β2 < α2 < β. Once α2 is given, α1 can be calculated from equation (20). For most
values of α2, α1 �= α2, but for a special value of α2, α1 = α2. (This value of α2 is obtained
by setting α1 = α2 in equation (20).) In other words, there are multi-LD/LD phases and one
symmetric phase corresponding to a pair of (α, β).

When equation (25) is met, α2 can be solved,

α2 = αβ − α − β ±
√

(α + β − αβ)2 + 4αβ2

2β
. (29)

Since α2 > 0, the solution related to ‘−’ needs to be discarded. Substituting α2 =
αβ−α−β+

√
(α+β−αβ)2+4αβ2

2β
into equation (20), one has α1 = α2. Therefore, LD/LD does not

exist even when equation (25) is met.

3.3. Symmetric LD phase

The symmetric LD phase exists if

α1 < β and α2 = α1. (30)

Substituting α2 = α1 into equation (20), one has

α1 = α

(
1 − α1

(α1 + 1)β

)
. (31)

Reformulating equation (31), one has

βα2
1 + (α + β − αβ)α1 − αβ = 0, (32)

which is identical to equation (25). The solution is, therefore, α1 = α2 =
αβ−α−β+

√
(α+β−αβ)2+4αβ2

2β
. Together with α1 < β, we have

α < β + 1. (33)

Equation (33) can always be met. Therefore, the phase boundary between HD/LD and
symmetric LD is determined by α = β

1−β
.
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(a) (b)

Figure 3. Phase diagram of the system. For L = 5000, a transient 107 time steps are discarded
and we gather data for 4 × 107 time steps. Black symbols for L = 100, red symbols for L = 1000
and blue symbols for L = 5000. In (a), the solid line is from mean-field calculations; in (b), the
inset shows the details for 0.2 < β < 0.4.

3.4. Symmetric HD phase

Finally, let us check symmetric HD phase. Since lane 1 is in HD, the bulk density in lane 1 is

ρ1 = 1

β + 1
. (34)

The density on the exit site L equals the bulk density, so that

pL = 1

β + 1
. (35)

Therefore

α2 = α

(
1 − 1

β + 1

)
= αβ

β + 1
. (36)

Together with α2 > β, we have

αβ

β + 1
> β. (37)

This will never be met. Therefore, symmetric HD phase does not exist.
The phase diagram predicted by mean-field calculation is shown in figure 3(a). Different

from the results in [24], the maximum current phase only exists at a single point A, and the
LD/LD phase exists on a line B instead of in a small region. Furthermore, the existence of
multi-phases on line B and at point A is observed.

4. Simulation results

In this section, the Monte Carlo simulation results are presented. First, we consider q = 1. We
consider three typical system of size L = 100, 1000 and 5000. Following [16], we investigate
the particle density histograms PL(ρ1, ρ2), where ρ1 and ρ2 are instantaneous densities of
particles in lane 1 and in lane 2,respectively. We focus on the observables ρmin and ρmax,
denoting the smaller one (ρmin) and larger one (ρmax) of ρ1 and ρ2 at the global maximum
of PL(ρ1, ρ2). When ρmax = ρmin < 0.5, the system is in symmetric LD phase; when
ρmax = ρmin > 0.5, the system is in symmetric HD phase; when ρmax = ρmin = 0.5, the
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ρ

ρ
(a)

(c)

(b)

Figure 4. Particle density histogram at α = 0.5. (a) β = 0.27, HD/LD phase; (b) β = 0.28,
asymmetric LD/LD phase; (c) β = 0.5, symmetric LD phase.

system is in symmetric MC phase; when ρmin < ρmax < 0.5, the system is in asymmetric
LD/LD phase; when ρmax > 0.5 and ρmin < 0.5, the system is in asymmetric HD/LD phase

First system size L = 100 is considered. Initially, the system is empty, and a transient
time of 108 time steps is discarded. We gather data for 4 × 108 time steps unless otherwise
mentioned.

Figure 4 shows three typical particle density histograms in the HD/LD phase, asymmetric
LD/LD phase and symmetric LD phase. One can see that in the symmetric LD phase, a single
peak exists on the diagonal, while in asymmetric phases, a double peak with two off-diagonal
maxima appears. As indicated in [16], the transition between the two asymmetric phases is
marked by histograms with two long ridges: one running close to the ρ1 axis and the other
close to ρ2 axis. At the transition, the global maximum shifts from the near end to the far end
of each ridge.

Figure 5 shows ρmin and ρmax against β with α fixed. One can see that for α = 0.2 and
0.5, three phases are distinguished. The asymmetric LD/LD phase appears if β is between
the values shown by the two dashed lines. When β is smaller than the value shown by the
left dashed line, a HD/LD phase occurs. When β is larger than the value shown by the right
dashed line, a symmetric LD phase occurs. In contrast, for α = 0.8 and 0.99, the asymmetric
LD/LD phase does not exist.

Nevertheless, we need to point out that the situation is quite different for α = 1 (see
figure 6). One can see that the global maximum could be achieved along the line ρ1 + ρ2 = 1.
With the increase (decrease) of β, the global maximum value increases (decreases) and the
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Figure 5. ρmin and ρmax against β. The black symbols correspond to α = 0.2, red symbols to
α = 0.5, green symbols to α = 0.8 and blue symbols to α = 0.99. The filled (open) symbols show
ρmax (ρmin). The solid lines are mean-field predictions. The upper line is from equation (3) and the
lower lines are from equation (7). One can see the mean-field predictions are in agreement with
simulation results for ρmax. For ρmin, the mean-field predictions are in agreement with simulation
results when α is small and there exists large deviation when α is large.

(a)

(c) (d )

(b)

Figure 6. Particle density histogram showing seesaw phase, α = 1. (a) β = 0.4; (b) β = 0.52;
(c) β = 0.57; (d) β = 0.7.
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(a)

(c) (d )

(b)

Figure 7. Particle density histogram for α = 0.99. (a) β = 0.4, HD/LD phase; (b) β = 0.52,
HD/LD phase; (c) β = 0.57, symmetric LD phase; (d) β = 0.7, symmetric LD phase.

region that global maximum could be achieved shrinks (expands). This phase is named ‘seesaw
phase’ in [18]. In contrast, even if α is slightly smaller than 1, the particle density histogram
will be quite different (cf figure 7).

The phase diagram is also shown in figure 3(a). One can see that the phase structure from
Monte Carlo simulation deviates from the mean-field result. This is because, as indicated in
[24], correlations are important in the dynamics of this system, especially for parallel update
rules, which usually produce the strongest correlations among different update rules [27]. This
perhaps could also partially explain why the results are different from that obtained by random
update rules.

It is also qualitatively different from that obtained from random update (cf figure 2 in
[24]): (i) asymmetric LD/LD phase does not exist for large value of α; (ii) the boundary
between HD/LD phase and symmetric LD phase bends downwards when α approaches one;
(iii) the maximum current phase only exists on a point and its existence depends on the system
size L.

With the increase of system size, the results remains qualitatively unchanged. A
quantitative change of the phase boundaries occurs (figure 3(b)). The region of asymmetric
LD/LD phase shrinks. Note that the boundary between HD/LD phase and asymmetric LD/LD
phase essentially does not depend on the system size, but the boundary between asymmetric
LD/LD phase and symmetric LD phase shifts left. The boundary between HD/LD phase
and symmetric LD phase also shifts left. In the thermodynamic limit, the LD/LD phase may
disappear, but this needs further investigations.

Next the preliminary simulation results for q < 1 are presented. It is found with the
introduction of stochastic hopping in the bulk, (i) the seesaw phase disappears (figure 8(a))
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(a)

(c)

(b)

Figure 8. Particle density histogram with the introduction of stochastic hopping in the bulk.
(a) α = 1.0, β = 0.4, q = 0.9, the seesaw phase disappears and symmetric LD phase appears
instead; (b) α = 1.0, β = 0.5, q = 0.5, symmetric MC phase; (c) α = 1.0, β = 0.1, q = 0.5,
symmetric HD phase.

and (ii) the MC/MC phase expands (figure 8(b)). Furthermore, a symmetric HD phase begins
to appear (figure 8(c)). In our future work, more details of effect of stochastic hopping on
symmetry breaking will be investigated.

5. Conclusion

In this paper, we have studied a two-lane totally asymmetric simple exclusion process
(TASEP) with narrow entrances under parallel update. First, the system in which particles
deterministically hop in the bulk is considered. Mean-field analysis shows two symmetry
breaking phases appear. However, different from previous results obtained under random
update rules, the asymmetric LD/LD phase is found to occupy only one line (i.e., line B)
in the phase diagram. Furthermore, a multi-stable phenomenon is observed. Specifically,
(i) on line B, both asymmetric LD/LD phase and symmetric LD phase could exist; (ii) on
point A (i.e., α = β = 1), the maximum current phase could appear if system size L is odd.
In contrast, if L is even, the current depends on the system size and a maximum current can
appear only when N → ∞.

Next Monte Carlo simulations are carried out, and particle density histograms PL(ρ1, ρ2)

are investigated. It is shown the phase structure from Monte Carlo simulation deviates from
the mean-field result. This may be because correlations are important in the dynamics of this
system. In the simulations, a seesaw phase is reproduced when α = 1. It is also found that the
asymmetric LD/LD phase occupies a small region instead of a line in the phase diagram when
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the system size L is small. With the increase of L, the region shrinks. However, presently we
could not conclude that in the thermodynamic limit, the LD/LD phase will disappear. This
needs further investigations. If possible, we will try to carry out some exact analysis of the
problem, using matrix product method and/or Bethe Ansatz method.

We also compare the results with that obtained from random update. The differences are
(i) asymmetric LD/LD phase does not exist for large value of α; (ii) for small system size,
the boundary between the HD/LD phase and symmetric LD phase bends downward when
α approaches one; (iii) the maximum current phase only exists on a point and its existence
depends on the system size L.

The system in which particles hop with rate q < 1 in the bulk is also studied. It is found
the introduction of stochastic hopping in the bulk has changed the phase diagram structure of
the system, the seesaw phase disappears and the symmetric HD phase appears.

Our works show that update rules have played an important role in the spontaneous
symmetry breaking phenomenon. The original bridge model will also need to be investigated
with parallel update rules, and this work is now in progress and will be reported in future
publications.
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Appendix

In this appendix, we solve equation (12)

α

(
1 − α

αβ + β + 1

)
> β. (A.1)

From equation (A.1), we have

α

(
αβ + β − α + 1

αβ + β + 1

)
> β, (A.2)

which becomes

α(αβ + β − α + 1) > (αβ + β + 1)β, (A.3)

i.e.,

α2β + αβ − α2 + α > αβ2 + β2 + β. (A.4)

Therefore, we have

(1 − β)α2 + (β2 − β − 1)α + β2 + β < 0. (A.5)

The two solutions of the equation (1 − β)α2 + (β2 − β − 1)α + β2 + β = 0 are

α1,2 = 1 + β − β2 ±
√

(β2 − β − 1)2 − 4(1 − β)(β2 + β)

2(1 − β)
. (A.6)
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Since (β2 − β − 1)2 − 4(1 − β)(β2 + β) = β4 + 2β3 − β2 − 2β + 1 = (1 − β − β2)2, we have

α1,2 = 1 + β − β2 ± |(1 − β − β2)|
2(1 − β)

. (A.7)

Thus α1 = 1 + β and α2 = β

1−β
. When β >

√
5−1
2 , α1 < α2; when β <

√
5−1
2 , α1 > α2.

Therefore, we have equations (13) and (14).
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